The formin homology 1 domain modulates the actin nucleation and bundling activity of Arabidopsis FORMIN1.

نویسندگان

  • Alphée Michelot
  • Christophe Guérin
  • Shanjin Huang
  • Mathieu Ingouff
  • Stéphane Richard
  • Natalia Rodiuc
  • Christopher J Staiger
  • Laurent Blanchoin
چکیده

The organization of actin filaments into large ordered structures is a tightly controlled feature of many cellular processes. However, the mechanisms by which actin filament polymerization is initiated from the available pool of profilin-bound actin monomers remain unknown in plants. Because the spontaneous polymerization of actin monomers bound to profilin is inhibited, the intervention of an actin promoting factor is required for efficient actin polymerization. Two such factors have been characterized from yeasts and metazoans: the Arp2/3 complex, a complex of seven highly conserved subunits including two actin-related proteins (ARP2 and ARP3), and the FORMIN family of proteins. The recent finding that Arabidopsis thaliana plants lacking a functional Arp2/3 complex exhibit rather modest morphological defects leads us to consider whether the large FORMIN family plays a central role in the regulation of actin polymerization. Here, we have characterized the mechanism of action of Arabidopsis FORMIN1 (AFH1). Overexpression of AFH1 in pollen tubes has been shown previously to induce abnormal actin cable formation. We demonstrate that AFH1 has a unique behavior when compared with nonplant formins. The activity of the formin homology domain 2 (FH2), containing the actin binding activity, is modulated by the formin homology domain 1 (FH1). Indeed, the presence of the FH1 domain switches the FH2 domain from a tight capper (Kd approximately 3.7 nM) able to nucleate actin filaments that grow only in the pointed-end direction to a leaky capper that allows barbed-end elongation and efficient nucleation of actin filaments from actin monomers bound to profilin. Another exciting feature of AFH1 is its ability to bind to the side and bundle actin filaments. We have identified an actin nucleator that is able to organize actin filaments directly into unbranched actin filament bundles. We suggest that AFH1 plays a central role in the initiation and organization of actin cables from the pool of actin monomers bound to profilin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drosophila Cappuccino alleles provide insight into formin mechanism and role in oogenesis

During Drosophila development, the formin actin nucleator Cappuccino (Capu) helps build a cytoplasmic actin mesh throughout the oocyte. Loss of Capu leads to female sterility, presumably because polarity determinants fail to localize properly in the absence of the mesh. To gain deeper insight into how Capu builds this actin mesh, we systematically characterized seven capu alleles, which have mi...

متن کامل

Cloning and functional characterization of a formin-like protein (AtFH8) from Arabidopsis.

The actin cytoskeleton is required for many cellular processes in plant cells. The nucleation process is the rate-limiting step for actin assembly. Formins belong to a new class of conserved actin nucleator, which includes at least 2 formin homology domains, FH1 and FH2, which direct the assembly of unbranched actin filaments. The function of plant formins is quite poorly understood. Here, we p...

متن کامل

A Novel Mechanism for the Formation of Actin-Filament Bundles by a Nonprocessive Formin

Actin-filament bundles (or cables) have a structural role during cell division and morphogenesis, but also serve as important "tracks" for the transport of materials during cytokinesis and polarized cell growth. However, the dynamic formation of these longitudinal actin-filament higher-order structures is not understood. Recently, several lines of evidence suggest that formins provide one avenu...

متن کامل

Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes.

Cytoplasmic actin cables are the most prominent actin structures in plant cells, but the molecular mechanism underlying their formation is unknown. The function of these actin cables, which are proposed to modulate cytoplasmic streaming and intracellular movement of many organelles in plants, has not been studied by genetic means. Here, we show that Arabidopsis thaliana formin3 (AFH3) is an act...

متن کامل

The Role of the FH1 Domain and Profilin in Formin-Mediated Actin-Filament Elongation and Nucleation

BACKGROUND Formin proteins nucleate actin filaments de novo and stay associated with the growing barbed end. Whereas the formin-homology (FH) 2 domains mediate processive association, the FH1 domains-in concert with the actin-monomer-binding protein profilin-increase the rate of barbed-end elongation. The mechanism by which this effect is achieved is not well understood. RESULTS We used total...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 17 8  شماره 

صفحات  -

تاریخ انتشار 2005